CH 351 QUALITATIVE ORGANIC ANALYSIS

1. Which hydrogen atom in the ether derivative shown below would appear as a triplet in the H NMR spectrum?

$$(A) \xrightarrow{(B)} CI_O \xrightarrow{(C)} (D)$$

What is the expected multiplicity due to coupling for the hydrogen atoms marked "D" in the diagram in Question 8?

- 2. Draw the 1H-NMR spectrum of 1,1-dibromoethane.
- 3. Which of the following structures is consistent with the NMR data shown below?

Compound: $C_4H_{10}O$

Chemical shift	multiplicity	integration
1.0	doublet	6H
1.5	multiplet	1H
3.8	doublet	2H
4.4	broad singlet	1H

4. A compound with the molecular formula $C_{10}H_{13}Cl$ contains only singlet peaks in the ^{1}H NMR spectrum {at ~ $\delta 1.6$ (6H), 2.2 (2H), and 7.2 (5H-an apparent singlet)}. Which structure below is consistent with these data?

5.

The ¹H NMR spectrum of a compound (C₃H₆Br₂) contains 3 peaks (listed in no particular order): a triplet (3H), a quintet (2H), and another triplet (1H). Which of the following structures is consistent with this spectrum?

$$(A) \underset{\mathsf{Br}}{\overset{\mathsf{Br}}{ \qquad}} (B) \underset{\mathsf{Br}}{\overset{\mathsf{Br}}{ \qquad}} (C) \overset{\mathsf{H}_3\mathsf{C}}{\overset{\mathsf{Br}}{ \qquad}} (D) \underset{\mathsf{Br}}{\overset{\mathsf{Br}}{ \qquad}} (D)$$

6.

Which of the following compounds would give a 13 C NMR spectrum containing 5 peaks: 3 in the δ 120-140 and 2 in the region δ 10-30?

$$(A) \begin{picture}(200,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,$$

The assignment is due December 06 (Thursday).